| 注册
首页|期刊导航|工矿自动化|基于径向基神经网络的电涡流传感器输出特性拟合研究

基于径向基神经网络的电涡流传感器输出特性拟合研究

尤文坚 梁兵 李荫军

工矿自动化2013,Vol.39Issue(2):47-50,4.
工矿自动化2013,Vol.39Issue(2):47-50,4.DOI:10.7526/j.issn.1671-251X.2013.02.012

基于径向基神经网络的电涡流传感器输出特性拟合研究

Research of output characteristic fitting of eddy-current sensor based on radial-basis function neural network

尤文坚 1梁兵 2李荫军3

作者信息

  • 1. 广西农业职业技术学院电子信息工程系,广西南宁 530007
  • 2. 广西机电职业技术学院电气工程系,广西南宁530007
  • 3. 广西电网公司南宁供电局,广西南宁530031
  • 折叠

摘要

Abstract

In view of problem that eddy-current sensor cannot reflect measured physical quantity accurately caused by higher nonlinear of output characteristic parameter, the paper proposed a scheme of using RBF neural network to fit output characteristic parameter of eddy-current sensor. The scheme uses newrb function to create RBF neural network, and takes measured physical quantity as input matrix and output of eddy-current sensor as output matrix to train the RBF neural network, so as to obtain low root-mean-square error and smooth output characteristic fitting curve of eddy-current sensor. The simulation result showed that RBF neural network can effectively realize fitting of output characteristic of eddy-current sensor by selecting proper creating function and expanding coefficient.

关键词

电涡流传感器/输出特性拟合/径向基神经网络/newrb函数/扩展系数

Key words

eddy-current sensor/ output characteristic fitting/ RBF neural network/ newrb function/ expanding coefficient

分类

矿业与冶金

引用本文复制引用

尤文坚,梁兵,李荫军..基于径向基神经网络的电涡流传感器输出特性拟合研究[J].工矿自动化,2013,39(2):47-50,4.

基金项目

广西省教育厅自然科学科研项目(200911LX547). (200911LX547)

工矿自动化

OA北大核心CSTPCD

1671-251X

访问量0
|
下载量0
段落导航相关论文