| 注册
首页|期刊导航|水力发电|基于误差修正的BP神经网络含沙量预报模型

基于误差修正的BP神经网络含沙量预报模型

黄清烜 梁忠民 曹炎煦 霍世青 许珂艳

水力发电2013,Vol.39Issue(1):23-26,66,5.
水力发电2013,Vol.39Issue(1):23-26,66,5.

基于误差修正的BP神经网络含沙量预报模型

Sediment Prediction Model Based on BP Neural Network Theory and Error Correction

黄清烜 1梁忠民 1曹炎煦 1霍世青 2许珂艳2

作者信息

  • 1. 河海大学水文水资源学院,江苏南京210098
  • 2. 黄河水利委员会水文局,河南郑州450004
  • 折叠

摘要

Abstract

Taking the reach from Longmen to Tongguan in Yellow River as study area, a BP neural network model is built to forecast the duration of sediment concentration in Tongguan Hydrological Station after analyzing the impact of sand and water runoff on sediment concentration. At the same time, an error self-regression model is also built based on error sequence to calibrate forecasting results. The durations of sediment concentration before and after calibration are compared, and the results show that the forecasting precision of calibrated duration of sediment concentration is significantly improved and the average uncertainty coefficient of five sediment delivery processes is increase to 0.76 from 0.35.

关键词

含沙量/BP神经网络/误差自回归/水文预报/黄河中游

Key words

esediment concentration/ BP neural network/ error self-regression/ hydrological forecasting/ middle reaches of Yellow River

分类

数理科学

引用本文复制引用

黄清烜,梁忠民,曹炎煦,霍世青,许珂艳..基于误差修正的BP神经网络含沙量预报模型[J].水力发电,2013,39(1):23-26,66,5.

基金项目

水利部公益性行业科研专项经费基金资助项目(2009101016) (2009101016)

江苏省高校优势学科建设工程基金资助项目 ()

水力发电

OA北大核心CSTPCD

0559-9342

访问量3
|
下载量0
段落导航相关论文