| 注册
首页|期刊导航|西安工程大学学报|一种基于PSO的混合核支持向量机算法

一种基于PSO的混合核支持向量机算法

谌璐 贺兴时 王芳妮 刘平丽

西安工程大学学报2012,Vol.26Issue(6):815-819,5.
西安工程大学学报2012,Vol.26Issue(6):815-819,5.

一种基于PSO的混合核支持向量机算法

Support vector machine algorithm of hybrid kernel based on PSO

谌璐 1贺兴时 1王芳妮 1刘平丽1

作者信息

  • 1. 西安工程大学理学院,陕西西安710048
  • 折叠

摘要

Abstract

As a new machine learning method, support vector machine algorithm has many obvious advantages in solving the problem of small samples. However, it is important to select an optimal kernel function and parameters in order to enhance the performance of support vector machine algorithm. In this paper, the support vector machine algorithm of hybrid kernel based on PSO is proposed by the mixed kernel function method combined with global kernel function and local kernel function. After Matlab simulation experiment, the results show that the improved algorithm is superior to standard SVM in respect of classification accuracy, learning and generalization ability.

关键词

支持向量机/全局核函数/局部核函数/混合核函数/粒子群优化算法

Key words

support vector machine/ global kernel function/ local kernel function/ hybrid kernel function/ particle swarm optimization

分类

数理科学

引用本文复制引用

谌璐,贺兴时,王芳妮,刘平丽..一种基于PSO的混合核支持向量机算法[J].西安工程大学学报,2012,26(6):815-819,5.

基金项目

陕西省教育厅专项基金项目(2010JK136) (2010JK136)

西安工程大学学报

1674-649X

访问量0
|
下载量0
段落导航相关论文