| 注册
首页|期刊导航|应用数学|一些非线性发展方程的有界钟状代数孤立波解

一些非线性发展方程的有界钟状代数孤立波解

李向正

应用数学2012,Vol.25Issue(4):875-880,6.
应用数学2012,Vol.25Issue(4):875-880,6.

一些非线性发展方程的有界钟状代数孤立波解

Bounded Bell Shape Algebraic Solitary Wave Solutions of Some Nonlinear Evolution Equations

李向正1

作者信息

  • 1. 河南科技大学 数学与统计学院,河南洛阳 471003
  • 折叠

摘要

Abstract

The bounded bell shape algebraic solitary wave solutions of nonlinear evolution equations are researched in this paper. The Kolmogorov-Petrovskii-Piskunov (KPP for short) equation,compound KdV-mKdV equation and mKdV equation are chose to as examples. The theory of planar dynamical systems is applied to study the existence conditions of algebraic solitary wave solutions. The algebraic solitary wave solutions of these three equations are obtained respectively. And a method for solving this type solutions is proposed, which is called algebraic solitary wave solution method(ASW method for short).

关键词

同宿轨/平面动力系统/代数孤立波解

Key words

Homoclinic orbit/Planar dynamic system/Algebraic solitary wave solution

分类

数理科学

引用本文复制引用

李向正..一些非线性发展方程的有界钟状代数孤立波解[J].应用数学,2012,25(4):875-880,6.

基金项目

国家自然科学基金(10871129),河南省教育厅自然科学研究计划项目(2011B110013),河南科技大学科研创新能力培育基金项目(2010CZ0016),河南科技大学博士启动基金项目(09001562) (10871129)

应用数学

OA北大核心CSCDCSTPCD

1001-9847

访问量0
|
下载量0
段落导航相关论文