应用数学2012,Vol.25Issue(4):875-880,6.
一些非线性发展方程的有界钟状代数孤立波解
Bounded Bell Shape Algebraic Solitary Wave Solutions of Some Nonlinear Evolution Equations
摘要
Abstract
The bounded bell shape algebraic solitary wave solutions of nonlinear evolution equations are researched in this paper. The Kolmogorov-Petrovskii-Piskunov (KPP for short) equation,compound KdV-mKdV equation and mKdV equation are chose to as examples. The theory of planar dynamical systems is applied to study the existence conditions of algebraic solitary wave solutions. The algebraic solitary wave solutions of these three equations are obtained respectively. And a method for solving this type solutions is proposed, which is called algebraic solitary wave solution method(ASW method for short).关键词
同宿轨/平面动力系统/代数孤立波解Key words
Homoclinic orbit/Planar dynamic system/Algebraic solitary wave solution分类
数理科学引用本文复制引用
李向正..一些非线性发展方程的有界钟状代数孤立波解[J].应用数学,2012,25(4):875-880,6.基金项目
国家自然科学基金(10871129),河南省教育厅自然科学研究计划项目(2011B110013),河南科技大学科研创新能力培育基金项目(2010CZ0016),河南科技大学博士启动基金项目(09001562) (10871129)