| 注册
首页|期刊导航|中国机械工程|板形模式识别的多输出最小二乘支持向量回归机新方法

板形模式识别的多输出最小二乘支持向量回归机新方法

张秀玲 张少宇 赵文保 徐腾

中国机械工程2013,Vol.24Issue(2):258-263,6.
中国机械工程2013,Vol.24Issue(2):258-263,6.DOI:10.3969/j.issn.1004-132X.2013.02.021

板形模式识别的多输出最小二乘支持向量回归机新方法

A Novel Method for Flatness Pattern Recognition via MLSSVR

张秀玲 1张少宇 2赵文保 1徐腾1

作者信息

  • 1. 燕山大学河北省工业计算机控制工程重点实验室,秦皇岛,066004
  • 2. 国家冷轧板带装备及工艺工程技术研究中心,秦皇岛,066004
  • 折叠

摘要

Abstract

In order to overcome the disadvantages that LS-SVR algorithm is not suitable to multiple input multiple output system modeling directly,a novel algorithm defined as MLSSVR was proposed by adding sample absolute errors in objective function. And a novel flatness pattern recognition method based on MLSSVR was put forward by applying MLSSVR algorithm on pattern recognition. Then,comparison between the MLSSVR recognition method and the combination method of LS - SVR was conducted, and the recognition ability of MLSSVR recognition model was tested and analyzed. Experimental results demonstrate the validity of the MLSSVR algorithm. The flatness pattern recognition model based on MLSSVR can avoid complex computation of LS-SVR combination method, enhance the recognition speed effectively, and has higher recognition accuracy and good generalization ability.

关键词

最小二乘支持向量回归机/多输出最小二乘支持向量回归机/板形/模式识别

Key words

least squares support vector regression(LS- SVR) /multi - output least squares support vector regression(MLSSVR) /flatness/pattern recognition

分类

矿业与冶金

引用本文复制引用

张秀玲,张少宇,赵文保,徐腾..板形模式识别的多输出最小二乘支持向量回归机新方法[J].中国机械工程,2013,24(2):258-263,6.

基金项目

国家自然科学基金资助项目(50675186) (50675186)

中国机械工程

OA北大核心CSCDCSTPCD

1004-132X

访问量0
|
下载量0
段落导航相关论文