一类具有饱和发生率的SIRS传染病模型的全局性分析OA
Global Analysis for a Class of SIRS Epidemic Model with Saturation Incidence
研究了一类具有饱和发生率且总人口具有常数输入的SIRS型传染病模型,得到了地方病平衡点存在的阈值条件。通过构造合适的李雅普诺夫函数,得到了模型无病平衡点和地方病平衡点的全局渐近稳定性,最后对所得理论结果进行了数值模拟。
A class of SIRS epidemic model with saturation incidence and constant input number is researched, and the threshold for existence of endemic equilibrium is investigated. By constructing suitable Lyapunov functions, the global asymp- totieal stability for the disease-free equilibrium and endemic equilibrium of this model is obtained. The numerical simulations are carried out to illustrate the theoretical results.
崔倩倩;张强
石河子大学理学院,新疆石河子832003石河子大学理学院,新疆石河子832003
数学
饱和发生率渐近稳定性Lyapunov函数
saturation incidenceasymptotic stabilityLyapunov function
《四川理工学院学报:自然科学版》 2012 (6)
83-85,3
评论