| 注册
首页|期刊导航|安徽农业科学|基于CHRIS/PROBA的植被叶面积指数估算模型研究

基于CHRIS/PROBA的植被叶面积指数估算模型研究

曹建军 顾祝军 徐建华 刘永娟

安徽农业科学Issue(2):907-910,4.
安徽农业科学Issue(2):907-910,4.

基于CHRIS/PROBA的植被叶面积指数估算模型研究

Estimation Models of Leaf Area Index (LAI) Based on Remote Sensing Image of CHRIS/PROBA

曹建军 1顾祝军 2徐建华 2刘永娟1

作者信息

  • 1. 华东师范大学地理信息科学教育部重点实验室,上海200062
  • 2. 南京晓庄学院生物化工与环境工程学院,江苏南京211171
  • 折叠

摘要

Abstract

The ESA-mission CHRIS-PROBA (Compact High Resolution Imaging Spectrometer onboard the Project for On-board Autonomy) was used for providing space borne imaging spectrometer and multiangular data to assess the LAI. Five spectral vegetation indices (VI) were derived from CHRIS-PROBA image, including normalized difference vegetation index (NDVI), perpendicular vegetation index (PVI), modified soil adjusted vegetation index (MSAVI), ratio vegetation index (RVI), atmospheric resistance vegetation index(ARVI). Three hundreds LAI-VI correlation models were established. The VI-LAI correlation coefficients varied greatly across vegetation, vegetation indices, as well as image angular. In all models, from the perspective of angular, the best model is 0° image,R2 =0. 591 ,RMSE =0. 650, the worst model is -55° image,R2 = 0. 551 ,RMSE =0.821, from the perspective vegetation types, the best model is coniferous forest, followed by the broadleaf forests, shrubs, coniferous forests and grasslands, from the types of vegetation model, exponential model is better than one regression model, from the perspective vegetation index, the best model is PVI, followed by MSAVI, NDVI, RVI, ARVI.

关键词

多角度/高光谱/植被指数/叶面积指数/模型

Key words

Multi-angular/ Hyperspectral/ Vegetation index/ LAI/ Model

分类

农业科技

引用本文复制引用

曹建军,顾祝军,徐建华,刘永娟..基于CHRIS/PROBA的植被叶面积指数估算模型研究[J].安徽农业科学,2013,(2):907-910,4.

基金项目

国家自然科学基金项目(41071281) (41071281)

江苏省高校自然科学研究项目(10KJD170005). (10KJD170005)

安徽农业科学

0517-6611

访问量0
|
下载量0
段落导航相关论文