| 注册
首页|期刊导航|河北科技大学学报|基于粒子群优化核独立分量的特征降维算法及其应用研究

基于粒子群优化核独立分量的特征降维算法及其应用研究

孙磊 贾云献 王卫国 张英波 赵劲松

河北科技大学学报2013,Vol.34Issue(1):60-66,7.
河北科技大学学报2013,Vol.34Issue(1):60-66,7.DOI:10.7535/hbkd.2013yx01013

基于粒子群优化核独立分量的特征降维算法及其应用研究

Feature dimension reduction of kernel independent component by particle swarm optimization and its application

孙磊 1贾云献 1王卫国 2张英波 1赵劲松1

作者信息

  • 1. 军械工程学院装备指挥与管理系,河北石家庄 050003
  • 2. 军械工程学院科研部,河北石家庄050003
  • 折叠

摘要

Abstract

The operating process of complex equipment has strong non-linearity, and it is often affected by some unknown factors, bringing much non-linear and non-gaussion monitoring data, and the calculation time grows up like exponential form as calculated amount increases. If these data are used directly for equipment residual life prediction, it is hard to complete model parameters' estimation and realize equipment's online maintenance. Aiming at settling the above problems, especially for the blindness of kernel function parameters selection in kernel independent component analysis, the kernel function parameters are optimized by particle swarm optimization arithmetic to reduce feature dimension. Finally, the oil monitoring data of self-propelled gun engine is used for dimension reduction. Testing results show the feasibility and effects of the proposed method.

关键词

粒子群算法/核独立分量分析/特征降维/油液光谱分析

Key words

particle swarm optimization/ kernel independent component analysis/ feature dimension reducing/ oil spectrum analysis

分类

机械制造

引用本文复制引用

孙磊,贾云献,王卫国,张英波,赵劲松..基于粒子群优化核独立分量的特征降维算法及其应用研究[J].河北科技大学学报,2013,34(1):60-66,7.

基金项目

总装备部重点预研基金资助项目(9140A27020308JB34) (9140A27020308JB34)

河北科技大学学报

OACSTPCD

1008-1542

访问量0
|
下载量0
段落导航相关论文