| 注册
首页|期刊导航|数学杂志|一类含凹凸非线性项拟线性椭圆方程的多重解

一类含凹凸非线性项拟线性椭圆方程的多重解

吕登峰 肖建海 徐国进

数学杂志2013,Vol.33Issue(1):6-14,9.
数学杂志2013,Vol.33Issue(1):6-14,9.

一类含凹凸非线性项拟线性椭圆方程的多重解

MULTIPLE SOLUTIONS FOR A CLASS OF QUASILINEAR ELLIPTIC EQUATIONS INVOLVING CONCAVE-CONVEX NONLINEARITIES

吕登峰 1肖建海 1徐国进1

作者信息

  • 折叠

摘要

Abstract

In this paper,we establish the existence of multiple solutions for an equation involving a quasilinear elliptic operator,where the nonlinearity f has a (p-1)-sublinear growth at infinity and nonlinearity g is superlinear at infinity.Using a three critical points theorem,we prove the existence of at least two distinct weak solutions to this problem,which extends the recent results established by Kristaly et al..

关键词

拟线性椭圆方程/三临界点定理/多重解/凹凸非线性项

Key words

quasilinear elliptic equation/ three critical points theorem/ multiple solutions/concave-convex nonlinearities

分类

数理科学

引用本文复制引用

吕登峰,肖建海,徐国进..一类含凹凸非线性项拟线性椭圆方程的多重解[J].数学杂志,2013,33(1):6-14,9.

基金项目

Supported by the Youth Foundation of Hubei Engineering University (Z2012003). (Z2012003)

数学杂志

OA北大核心CSCDCSTPCD

0255-7797

访问量7
|
下载量0
段落导航相关论文