| 注册
首页|期刊导航|计算机应用与软件|基于Haar小波和融合HMM的步态识别方法

基于Haar小波和融合HMM的步态识别方法

李萍

计算机应用与软件2013,Vol.30Issue(3):244-246,254,4.
计算机应用与软件2013,Vol.30Issue(3):244-246,254,4.DOI:10.3969/j.issn.1000-386x.2013.03.064

基于Haar小波和融合HMM的步态识别方法

GAIT RECOGNITION METHOD BASED ON HAAR WAVELET AND FUSED HMMS

李萍1

作者信息

  • 1. 陕西学前师范学院计算机科学与技术系 陕西西安710000
  • 折叠

摘要

Abstract

This paper presents a novel gait recognition approach based on Haar wavelet and fused hidden Markov model. It solves the problem that in gait recognition there are insufficient key points of the gait feature in each region. First, the approach converts images from video sequences to binary contour, and uses Haar wavelet transform to obtain the distinct key points of gait features. Then two sub-images are utilised to represent the gait feature of each contour, and the principal component analysis is employed to reduce the number of dimensions. Finally, fused hidden Markov model is used for training and testing. Simulation result indicates that the approach can simplify the process of gait identification, and can also improve the recognition accuracy.

关键词

特征提取/步态识别/Haar小波域/隐融合马尔可夫模型

Key words

Feature extraction/ Gait recognition / Haar wavelet/ Fused hidden Markov models (FHMM)

分类

信息技术与安全科学

引用本文复制引用

李萍..基于Haar小波和融合HMM的步态识别方法[J].计算机应用与软件,2013,30(3):244-246,254,4.

计算机应用与软件

OA北大核心CSCDCSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文