| 注册
首页|期刊导航|山东科学|基于概率与推断的社交网络聚类技术研究

基于概率与推断的社交网络聚类技术研究

宋传超 王庚

山东科学2013,Vol.26Issue(2):92-97,6.
山东科学2013,Vol.26Issue(2):92-97,6.DOI:10.3976/j.issn.1002-4026.2013.02.018

基于概率与推断的社交网络聚类技术研究

Probability and interference based social network clustering technology

宋传超 1王庚1

作者信息

  • 折叠

摘要

Abstract

We apply Locality Sensitive Hashing (LSH) to graph clustering, and then present a new clustering technology, Probabilistic Graph Cluster (PGC). We also compare the similarity of the neighbor set of every node in a graph, and verify it with Bayesian statistic inference to find the most compact and inexact clustering in linear time. Experimental results show that PGC is more scalable with the enlargement of a graph and that the clustering speed of PGC is twice faster than that of PageRank Cluster in real data sets, PGC is therefore an effective and alternative solution.

关键词

/聚类/概率/位置敏感哈希算法

Key words

graph/clustering/probability/LSH

分类

信息技术与安全科学

引用本文复制引用

宋传超,王庚..基于概率与推断的社交网络聚类技术研究[J].山东科学,2013,26(2):92-97,6.

山东科学

OACSTPCD

1002-4026

访问量0
|
下载量0
段落导航相关论文