| 注册
首页|期刊导航|湖南大学学报(自然科学版)|面向多模态函数的自适应混沌爬山微粒群算法

面向多模态函数的自适应混沌爬山微粒群算法

张英杰 郭会芳 付海滨 范朝冬

湖南大学学报(自然科学版)2013,Vol.40Issue(2):77-81,5.
湖南大学学报(自然科学版)2013,Vol.40Issue(2):77-81,5.

面向多模态函数的自适应混沌爬山微粒群算法

An Adaptive Chaotic Hill-climbing Particle Swarm Optimization Algorithm for Multimodal Functions

张英杰 1郭会芳 1付海滨 1范朝冬1

作者信息

  • 折叠

摘要

Abstract

An adaptive chaotic hill-climbing particle swarm optimization was presented in order to overcome the unability to find all extreme points, local optimum and slow convergence speed ,at later time caused by Particle Swarm Optimization (PSO) in multimodal function optimization. An improved PSO was proposed , and the population of diversity was measured by entropy. A dynamic chads mechanism was. used to increase the diveirsity when ther is a lack of population diversity, and a hill-climbing method was introduced to improve the convergence speed of PSO in later period Four kinds of typical multimodal functions were chosen to test the performance of the improved algorithm in solving complex multimodal function optimization problems. The results show that the improved algorithm has better performance than the existing algorithms.

关键词

微粒群算法/多模态函数//混沌机制/爬山算法

Key words

particle swarm optimization/ multi-modal function/ entropy/ chaos mechanism/ hill-climbing

分类

信息技术与安全科学

引用本文复制引用

张英杰,郭会芳,付海滨,范朝冬..面向多模态函数的自适应混沌爬山微粒群算法[J].湖南大学学报(自然科学版),2013,40(2):77-81,5.

基金项目

国家自然科学基金资助项目,(61174140) (61174140)

湖南省科技计划重点项目(2010GK2022) (2010GK2022)

长沙市科技计划重点项目(K100501811) (K100501811)

湖南大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1674-2974

访问量0
|
下载量0
段落导航相关论文