中国石油大学学报(自然科学版)2013,Vol.37Issue(2):186-190,5.DOI:10.3969/j.issn.1673-5005.2013.02.031
给定直径和悬挂点数的树的拉普拉斯系数
Laplacian coefficients of trees with given diameter and number of pendant vertices
摘要
Abstract
Let φ(T,λ)=n∑k=0(-1)kck(T)λn-k be the characteristic polynomial of Laplacian matrix of a n-vertex tree T. It is well known that cn_2( T) and cn_3( T) are equai to the Wiener index and modified hyper-Wiener index of T, respectively. By applying some transformations of graphs, the trees with given diameter and number of pendant vertices were characterized which simultaneously minimize all Laplacian coefficients. In particular, some trees with extremal Wiener index, modified hyper-Wiener index and Laplacian-like energy were determined.关键词
拉普拉斯系数/维纳指标/Laplacian-like能量/悬挂点Key words
Laplacian coefficient/ Wiener index/ Laplacian-like energy/ pendant vertex分类
数理科学引用本文复制引用
谭尚旺,王奇龙..给定直径和悬挂点数的树的拉普拉斯系数[J].中国石油大学学报(自然科学版),2013,37(2):186-190,5.基金项目
国家自然科学基金项目(10871204) (10871204)
中央高校基本科研业务费专项(09CX04003A) (09CX04003A)