| 注册
首页|期刊导航|北京生物医学工程|一种面向小样本数据的错标记样本识别方法

一种面向小样本数据的错标记样本识别方法

秦瑞斌 郑浩然 周宏

北京生物医学工程2012,Vol.31Issue(6):574-578,5.
北京生物医学工程2012,Vol.31Issue(6):574-578,5.DOI:10.3969/j.issn.1002-3208.2012.06

一种面向小样本数据的错标记样本识别方法

A mislabeled sample recognition method for small sample data

秦瑞斌 1郑浩然 1周宏1

作者信息

  • 1. 中国科学技术大学计算机科学与技术学院,合肥230027
  • 折叠

摘要

Abstract

Objective To propose a new method UCL-stability based on the CL-stability method to solve the mislabeled sample problem. Methods According to the number of significant differential features ( after sample label flipping) , UCL-stability proposes a voting weight in order to measure the effects of flipping different samples' label. Results The experimental results of two cancer microarray data sets indicate that both UCL-stability and CL-stability can recognize the suspect samples effectively. The further experiments of artificial mislabeling show that UCL-stability can obtain a higher value of precision and recall. Conclusions The UCL-stability algorithm not only considers the effects of a single sample's mislabeling,but also distinguishes the effects of different samples' mislabeling. In order to measure the effects quantitatively, we employ the feature information and achieve preferable results.

关键词

错标记/小样本数据/微阵列

Key words

mislabeling/ small sample data/ microarray

分类

医药卫生

引用本文复制引用

秦瑞斌,郑浩然,周宏..一种面向小样本数据的错标记样本识别方法[J].北京生物医学工程,2012,31(6):574-578,5.

基金项目

973计划(2011CB910203)资助 (2011CB910203)

北京生物医学工程

OACSTPCD

1002-3208

访问量0
|
下载量0
段落导航相关论文