| 注册
首页|期刊导航|西安理工大学学报|基于DPSO优化支持向量机的水轮机组振动故障诊断

基于DPSO优化支持向量机的水轮机组振动故障诊断

张欣伟 陈文献 张锋利

西安理工大学学报2013,Vol.29Issue(2):172-175,4.
西安理工大学学报2013,Vol.29Issue(2):172-175,4.

基于DPSO优化支持向量机的水轮机组振动故障诊断

Hydraulic Generating Vibration Faults Diagnosis by Support Vector Machine Based on Particle Swarm Optimization

张欣伟 1陈文献 2张锋利3

作者信息

  • 1. 西安理工大学水利水电学院,陕西西安710048
  • 2. 安康供电局,陕西安康725000
  • 3. 陕西地方电力设计有限公司,陕西西安710075
  • 折叠

摘要

Abstract

According to the basic PSO algorithm,searching for optimum parameters of support vector machine in the late stage is easy to fall into local optimum,and further affects support vector machine in hydraulic turbine vibration fault diagnosis correct rate.With an aim at this problem,the dynamic particle swarm algorithm (DPSO) is selected to optimize the support vector machine.The hydraulic turbine fault feature vector is input into the optimized support vector machine fault diagnosis.The simulation results show that DPSO optimized SVM can find the global optimal solution,thereby having good classification accuracy.In the hydraulic turbine vibration fault diagnosis compared to the traditional PSO optimized support vector machine has higher diagnostic accuracy.

关键词

水轮机/振动故障诊断/动态粒子群算法/支持向量机

Key words

hydraulic turbine/ vibration faults diagnosis / PSO/ SVM

分类

能源科技

引用本文复制引用

张欣伟,陈文献,张锋利..基于DPSO优化支持向量机的水轮机组振动故障诊断[J].西安理工大学学报,2013,29(2):172-175,4.

基金项目

国家自然科学基金资助项目(51279161). (51279161)

西安理工大学学报

OA北大核心CSTPCD

1006-4710

访问量0
|
下载量0
段落导航相关论文