吉林大学学报(理学版)2013,Vol.51Issue(4):568-572,5.DOI:10.7694/jdxblxb20130405
一类求解非线性方程最优的8阶收敛迭代法
A Family of Optimal Eighth-Order Iterative Methods for Solving Nonlinear Equations
摘要
Abstract
In this paper,we present a new family of optimal eighth-order iterative methods for solving nonlinear equations by using weight function approach.Per iteration the new methods need to compute three functional evaluations and one evaluation of first-order derivative,which implies that the efficiency index of the new method is 1.682.Numerical results shown that,comparing with the other iterative methods,our iterative methods have higher convergence order and calculation precision.关键词
非线性方程/最优阶/8阶收敛/迭代法/求根Key words
nonlinear equations/ optimal order/ eighth-order convergence/ iterative method/root-finding分类
数理科学引用本文复制引用
王晓锋,张铁..一类求解非线性方程最优的8阶收敛迭代法[J].吉林大学学报(理学版),2013,51(4):568-572,5.基金项目
国家自然科学基金(批准号:11071033). (批准号:11071033)