| 注册
首页|期刊导航|计算机应用研究|一种基于Sigmoid函数的改进协同过滤推荐算法

一种基于Sigmoid函数的改进协同过滤推荐算法

方耀宁 郭云飞 扈红超 兰巨龙

计算机应用研究2013,Vol.30Issue(6):1688-1691,4.
计算机应用研究2013,Vol.30Issue(6):1688-1691,4.DOI:10.3969/j.issn.1001-3695.2013.06.022

一种基于Sigmoid函数的改进协同过滤推荐算法

Improved collaborative filtering recommender algorithm based on Sigmoid function

方耀宁 1郭云飞 1扈红超 1兰巨龙1

作者信息

  • 1. 国家数字交换系统工程技术研究中心,郑州450002
  • 折叠

摘要

Abstract

As the rapid development of the electronic commerce and social network,recommender systems have become one of the most important research areas in data mining field.Recommender systems can identify users' interest out of humorous information in order to provide personalized service.Collaborative filtering (CF) is efficient in extracting users' preferences and making proper recommendations.To address the data sparsity problem of classic CF algorithms and improve the performance,this paper introduced an improved algorithm based on Sigmoid function.Different items were modeled with Sigmoid function in order to capture their popularity,while different users were modeled to map ratings into preferences.Predictions were made according to that preferences should keep consistent with popularities.Experimental results on two real world datasets show the proposed method can alleviate the sparsity problem and are effective to improve the performance of classic CF algorithms.

关键词

推荐系统/协同过滤/稀疏性问题/Sigmoid函数

Key words

recommender systems/ collaborative filtering(CF) / sparsity problem/ Sigmoid function

分类

信息技术与安全科学

引用本文复制引用

方耀宁,郭云飞,扈红超,兰巨龙..一种基于Sigmoid函数的改进协同过滤推荐算法[J].计算机应用研究,2013,30(6):1688-1691,4.

基金项目

国家"973"计划资助项目(2012CB315901) (2012CB315901)

国家"863"计划资助项目(2011AA01A103) (2011AA01A103)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文