| 注册
首页|期刊导航|应用数学|亚纯系数的高阶线性微分方程的解的增长性

亚纯系数的高阶线性微分方程的解的增长性

何静 郑秀敏

应用数学2013,Vol.26Issue(1):114-124,11.
应用数学2013,Vol.26Issue(1):114-124,11.

亚纯系数的高阶线性微分方程的解的增长性

Growth of Solutions of Some Higher Order Linear Differential Equations with Meromorphic Coefficients

何静 1郑秀敏1

作者信息

  • 1. 江西师范大学数学与信息科学学院,江西南昌330022
  • 折叠

摘要

Abstract

In this paper,we investigate the higher order linear differential equations with meromorphic coefficients.When the coefficients of the equation satisfy some conditions,we prove that every meromorphic solution f(z)((≠) 0) of it is of infinite order and hyper-order n.In addition,we also consider meromorphic solutions of the nonhomogeneous linear differential equation.

关键词

线性微分方程/亚纯解/超级/不同零点的超收敛指数

Key words

Linear differential equation/ Meromorphic solution/ Hyper-order/ Hyper exponent of convergence of distinct zero

分类

数理科学

引用本文复制引用

何静,郑秀敏..亚纯系数的高阶线性微分方程的解的增长性[J].应用数学,2013,26(1):114-124,11.

基金项目

Supported by the National Natural Science Foundation of China (11126145),the Natural Science Foundation of Jiangxi Province in China (20114BAB211003),and the Youth Science Foundation of Education Bureau of Jiangxi Province in China (GJJ11072) (11126145)

应用数学

OA北大核心CSCDCSTPCD

1001-9847

访问量0
|
下载量0
段落导航相关论文