计算机工程2013,Vol.39Issue(7):76-82,7.DOI:10.3969/j.issn.1000-3428.2013.07.017
基于MapReduce的分布式网络数据聚类算法
Distributed Clustering Algorithm for Network Data Based on MapReduce
摘要
Abstract
Due to the high time and space complexity and physical machines out of memory,traditional clustering algorithms usually can not effectively analyze and deal with large data network.To solve this problem,this paper proposes a distributed clustering algorithm for network data based on MapReduce model.It adopts the theory of MRC theory to design limited round number of MapReduce to control the time in shuffle stage,and utilizes the Map inner merging technology to control network flow.It proposes an idea that if merge the intermediate results,only merge clusters and do not consider the internal nodes,which can control memory overhead.It utilizes the data sets generated by simulation to do experiment.Experimental results show that when the data size and cluster scale increases,the CAMR algorithm has good speedup ratio and scalability.关键词
聚类算法/分布式聚类/MapReduce编程模型/数据挖掘/社团结构Key words
clustering algorithm/ distributed clustering/ MapReduce programming model/ data mining/ community structure分类
信息技术与安全科学引用本文复制引用
陈东明,刘健,王冬琦,徐晓伟..基于MapReduce的分布式网络数据聚类算法[J].计算机工程,2013,39(7):76-82,7.基金项目
辽宁省自然科学基金资助项目(20102059) (20102059)