| 注册
首页|期刊导航|计算机工程|基于变异概率分析的改进QGA及其应用

基于变异概率分析的改进QGA及其应用

戴勇谦 张明武 祝胜林 戴勇新

计算机工程2013,Vol.39Issue(7):247-251,256,6.
计算机工程2013,Vol.39Issue(7):247-251,256,6.DOI:10.3969/j.issn.1000-3428.2013.07.055

基于变异概率分析的改进QGA及其应用

Improved QGA Based on Mutation Probability Analysis and Its Application

戴勇谦 1张明武 2祝胜林 2戴勇新3

作者信息

  • 1. 华南农业大学公共基础课实验教学中心,广州510642
  • 2. 华南农业大学信息学院,广州510642
  • 3. 江西机电职业技术学院,南昌330013
  • 折叠

摘要

Abstract

Standard Quantum Genetic Algorithm(QGA) is premature convergence to local optima when it is applied to combinatorial optimization.To solve this problem,this paper analyzes the mutation probability distribution of Q-bit by introducing the k bit variation subspace conception and points out the conflict of traditional random mutation mechanism and the QGA self-implied variation mechanism.Based on these analysis,a novel Stage Large-scale Variation Mechanism Based on Observation(SLVMBOO) is proposed.Mutation operator of SLVMBOO which is embedded in the quantum rotation policy table is simple to implement and it is highly efficient.The tests results of different scale of 0/1 knapsack problem show that this mechanism can effectively avoid the premature convergence and successfully jump out of local optima when it is applied to combinatorial optimization.The global optimization ability is superior to the standard QGA.

关键词

量子计算/量子遗传算法/变异机制/变异概率分布/组合优化/0/1背包问题

Key words

quantum computation/ Quantum Genetic Algorithm(QGA)/ mutation mechanism/ mutation probability distribution/combinatorial optimization/ 0/1 knapsack problem

分类

信息技术与安全科学

引用本文复制引用

戴勇谦,张明武,祝胜林,戴勇新..基于变异概率分析的改进QGA及其应用[J].计算机工程,2013,39(7):247-251,256,6.

基金项目

国家自然科学基金资助项目(61272404) (61272404)

计算机工程

OACSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文