| 注册
首页|期刊导航|计算机与现代化|基于混合优化的RBF神经网络模型研究

基于混合优化的RBF神经网络模型研究

罗芳琼

计算机与现代化Issue(7):51-55,5.
计算机与现代化Issue(7):51-55,5.DOI:10.3969/j.issn.1006-2475.2013.07.013

基于混合优化的RBF神经网络模型研究

Research on an Optimized RBF Neural Network Model Applied to CPI Forecast

罗芳琼1

作者信息

  • 1. 柳州师范高等专科学校数学与计算机科学系,广西柳州545004
  • 折叠

摘要

Abstract

This paper,aiming at the nonlinear characteristics of CPI and the parameters of being difficult to be objectively determined in RBF neural network,puts forward a kind of optimization of RBF neural network method which combines orthogonal least squares (OLS),K-means clustering and gradient descent algorithm,computing activation function with the linear combinations of Gauss,reflected sigmoidal and inverse multiquadrics radial basis functions,then builds a model for CPI to fit and forecast by using the optimization algorithm of RBF neural network.Experimental results show that the model is of a good convergence and generalization ability,the model has a certain universal applicability in the prediction performance which is obviously superior to the single method forecast and the hybrid network on Gauss kernel function.

关键词

径向基神经网络/优化混合算法/居民消费价格指数预测

Key words

RBF neural network/optimized hybrid algorithm/CPI forecasting

分类

信息技术与安全科学

引用本文复制引用

罗芳琼..基于混合优化的RBF神经网络模型研究[J].计算机与现代化,2013,(7):51-55,5.

基金项目

广西教育厅科研基金资助项目(201204LX506) (201204LX506)

柳州师范高等专科学校科研基金资助项目(LSZ2011B007) (LSZ2011B007)

计算机与现代化

OACSTPCD

1006-2475

访问量0
|
下载量0
段落导航相关论文