| 注册
首页|期刊导航|计算机与现代化|基于Pawlak的决策粗糙集的属性约简研究

基于Pawlak的决策粗糙集的属性约简研究

韩丽丽 李龙澍

计算机与现代化Issue(7):56-58,3.
计算机与现代化Issue(7):56-58,3.DOI:10.3969/j.issn.1006-2475.2013.07.014

基于Pawlak的决策粗糙集的属性约简研究

Researh on Attribute Reduction of Decision-theoretic Rough Set Model Based on Pawlak

韩丽丽 1李龙澍1

作者信息

  • 1. 安徽大学计算机科学与技术学院,安徽合肥230601
  • 折叠

摘要

Abstract

Rough set theory can be applied to rule induction.There are two different types of classification rules,positive and boundary rules,which leading to different decisions and consequences.They can be distinguished from the syntax measures and semantic measures.Both the two can be interpreted by a probabilistic extension of the Pawlak rough set model.Attribute reduction is an important concept of rough set theory.This paper addresses attribute reduction in decision-theoretic rough set models regarding the classification properties of decision-monotonicity and provides a positive-based Veduction model in attribute reduction and its analysis.

关键词

决策粗糙集/属性约简/损失函数

Key words

decision-theoretic rough set/attribute reduction/loss function

分类

信息技术与安全科学

引用本文复制引用

韩丽丽,李龙澍..基于Pawlak的决策粗糙集的属性约简研究[J].计算机与现代化,2013,(7):56-58,3.

基金项目

安徽高等学校省级自然科学基金资助项目(KJ2011Z020) (KJ2011Z020)

计算机与现代化

OACSTPCD

1006-2475

访问量0
|
下载量0
段落导航相关论文