| 注册
首页|期刊导航|情报杂志|文献资源主题向量表征方法分析及改进研究

文献资源主题向量表征方法分析及改进研究

汪英姿 徐飞

情报杂志Issue(11):141-144,4.
情报杂志Issue(11):141-144,4.

文献资源主题向量表征方法分析及改进研究

On Literature Resources Theme Vector Representation Method and Its Improvement

汪英姿 1徐飞1

作者信息

  • 1. 常州大学 常州 213164
  • 折叠

摘要

Abstract

  DDM model introduced into the currently popular LDA model the residual component to make up for the loss of the discrimina-ted information. Because the vocabulary of document obeys the power-law distribution, residual component will be affected by the high frequency theme vocabulary. This paper puts forward HDDM model, using the improved TF-IDF function, sets the sampling weight of the residual component, and improves the low frequency vocabulary’s function in residual component. Experiments show that this model improves the quality of personalized recommendation, further promoting the precision.

关键词

个性化推荐/DDM模型/HDDM模型/TF-IDF函数

Key words

personalized recommendation/DDM model/HDDM model/TF-IDF function

分类

信息技术与安全科学

引用本文复制引用

汪英姿,徐飞..文献资源主题向量表征方法分析及改进研究[J].情报杂志,2012,(11):141-144,4.

情报杂志

OA北大核心CHSSCDCSSCI

1002-1965

访问量0
|
下载量0
段落导航相关论文