| 注册
首页|期刊导航|计算机应用研究|基于CUDA的并行粒子群优化算法的设计与实现

基于CUDA的并行粒子群优化算法的设计与实现

蔡勇 李光耀 王琥

计算机应用研究2013,Vol.30Issue(8):2415-2418,4.
计算机应用研究2013,Vol.30Issue(8):2415-2418,4.DOI:10.3969/j.issn.1001-3695.2013.08.043

基于CUDA的并行粒子群优化算法的设计与实现

Research and implementation of parallel particle swarm optimization based on CUDA

蔡勇 1李光耀 1王琥1

作者信息

  • 1. 湖南大学汽车车身先进设计制造国家重点实验室,长沙410082
  • 折叠

摘要

Abstract

This paper raised a fine-grained PSO algorism based on GPU acceleration,which could reduce the computing time for processing large amounts of data and solve large-scale complex problems.The implementation of proposed method based on compute unified device architecture (CUDA),in order to accelerate the convergence rate of whole swarm,a larger number of GPU threads used to parallel process a single update and fitness evaluation alone.For ensuring the stability of the code and it easier to program,fully used several numerical library provide by CUDA.Experiments based on several benchmark test functions show that more than 90 times speeds obtained with the same calculation precision,it compared to CPU-based sequential implementation.

关键词

粒子群优化算法/并行计算/GPU/统一计算设备架构

Key words

particle swarm optimization(PSO) algorithm/ parallel computing/ GPU / CUDA

分类

信息技术与安全科学

引用本文复制引用

蔡勇,李光耀,王琥..基于CUDA的并行粒子群优化算法的设计与实现[J].计算机应用研究,2013,30(8):2415-2418,4.

基金项目

国家"863"计划资助项目(2012AA111802) (2012AA111802)

国家自然科学基金资助项目(11172097) (11172097)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量2
|
下载量0
段落导航相关论文