| 注册
首页|期刊导航|计算机应用研究|分步填充缓解数据稀疏性的协同过滤算法

分步填充缓解数据稀疏性的协同过滤算法

张玉芳 代金龙 熊忠阳

计算机应用研究2013,Vol.30Issue(9):2602-2605,4.
计算机应用研究2013,Vol.30Issue(9):2602-2605,4.DOI:10.3969/j.issn.1001-3695.2013.09.010

分步填充缓解数据稀疏性的协同过滤算法

Collaborative filtering algorithm based on two-step filling for alleviating data sparsity

张玉芳 1代金龙 1熊忠阳1

作者信息

  • 1. 重庆大学计算机学院,重庆400044
  • 折叠

摘要

Abstract

To overcome the data sparsity of traditional collaborative filtering algorithm which can cause inaccuracy during finding the nearest-neighbors,the paper came up with a new method combining conditional probability with traditional collaborative algorithm whose neighbors was not always k.The algorithm' core was that the last data matrix was calculated by two-step filling.The first step,it accepted the users whose similarity and the number of both-rated items met the standard as the target user's neighbors and then calculated the value and filled the unrated-items.The second step would fill the left unrated-items relying on the data matrix filled by the first step.Experimental results show that this algorithm can find reliable neighbors,alleviate the data sparsity and achieve better prediction accuracy obviously.

关键词

协同过滤/条件概率/推荐系统/数据稀疏/分步填充

Key words

collaborative filtering/ conditional probability/ recommendation system/ data sparsity/ two-step filling

分类

信息技术与安全科学

引用本文复制引用

张玉芳,代金龙,熊忠阳..分步填充缓解数据稀疏性的协同过滤算法[J].计算机应用研究,2013,30(9):2602-2605,4.

基金项目

国家自然科学基金资助项目(71102065) (71102065)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文