| 注册
首页|期刊导航|重庆大学学报|自适应卡尔曼滤波法磷酸铁锂动力电池剩余容量估计

自适应卡尔曼滤波法磷酸铁锂动力电池剩余容量估计

刘和平 许巧巧 胡银全 袁闪闪

重庆大学学报Issue(1):68-74,7.
重庆大学学报Issue(1):68-74,7.DOI:10.11835/j.issn.1000-582X.2014.01.011

自适应卡尔曼滤波法磷酸铁锂动力电池剩余容量估计

刘和平 1许巧巧 1胡银全 1袁闪闪1

作者信息

  • 1. 重庆大学 输配电装备及系统安全与新技术国家重点实验室,重庆 400044
  • 折叠

摘要

Abstract

The Kalman filter algorithm can be used to estimate the state of charge (SOC)of power batteries, however,it easily causes divergence due to uncertain of system noise and its estimation performance is affected by model.An adaptive Kalman filter algorithm is adopted to dynamically estimate SOC of lithium iron phosphate batteries for application in electric vehicles. At first, an equivalent circuit model, appropriate for SOC estimation is built after studying battery models.Then some charging and discharging experiments are carried out for parameter identification and the results are verified.At last,the adaptive Kalman filter algorithm is used on this model for on-line SOC estimation under unknown interfering noise. Simulation results show that adaptive Kalman filter method can correct SOC estimation error caused by tiny model error online,and the estimate accuracy is higher than Kalman filter method.Adaptive Kalman filter algorithm can also correct the initial error.Full-cycle test in electric vehicles proves that the algorithm is appropriate for SOC estimation of lithium iron phosphate battery.

关键词

磷酸铁锂动力电池/剩余容量/状态估计/自适应/卡尔曼滤波

Key words

lithium iron phosphate battery/state of charge/state estimation/adaptive/Kalman filters

分类

信息技术与安全科学

引用本文复制引用

刘和平,许巧巧,胡银全,袁闪闪..自适应卡尔曼滤波法磷酸铁锂动力电池剩余容量估计[J].重庆大学学报,2014,(1):68-74,7.

基金项目

中央高校基本科研业务费资助项目 ()

重庆大学学报

OA北大核心CSCDCSTPCD

1000-582X

访问量0
|
下载量0
段落导航相关论文