| 注册
首页|期刊导航|东南大学学报(自然科学版)|基于重力场模型和神经网络融合的大范围测区 GPS 高程转换方法

基于重力场模型和神经网络融合的大范围测区 GPS 高程转换方法

孙腾科 赵杏杏 张永磊

东南大学学报(自然科学版)Issue(z2):375-379,5.
东南大学学报(自然科学版)Issue(z2):375-379,5.DOI:10.3969/j.issn.1001-0505.2013.S2.034

基于重力场模型和神经网络融合的大范围测区 GPS 高程转换方法

GPS height conversion method based on combination of gravity field model and neural network in large scale

孙腾科 1赵杏杏 1张永磊1

作者信息

  • 1. 河海大学地球科学与工程学院,南京210098
  • 折叠

摘要

Abstract

In order to improve the accuracy of GPS ( global positioning system) height conversion in large scale, based on the conventional GPS height conversion methods such as plane fitting, quadric surface fitting and polyhedral function fitting and so on, a new GPS height conversion method based on the combination of the gravity field model and neural network is presented.A large scale measur-ing range in Jiangsu Province is taken as an example.The comparison of the GPS height conversion conventional methods and the proposed method based on the gravity field model ( EGM2008 , EIGEN-6C2,EIGEN6C) and neural network are carried out.The results show that the conversion accuracies of plane fitting, quadric surface fitting and polyhedral function fitting are 1.367 2,0.122 4 and 0.130 6 m, respectively.However, the conversion accuracies of the methods combining EGM2008, EIGEN-6C2, EIGEN-6C with neural network are 0.041 1,0.038 1 and 0.039 2 m, re-spectively.Therefore, the combination of the gravity field model and neural network can greatly im-prove the precision of GPS height transformation in large scale.

关键词

重力场模型/神经网络/GPS高程转换

Key words

gravity field model/neural network/GPS ( global positioning system) height conversion

分类

天文与地球科学

引用本文复制引用

孙腾科,赵杏杏,张永磊..基于重力场模型和神经网络融合的大范围测区 GPS 高程转换方法[J].东南大学学报(自然科学版),2013,(z2):375-379,5.

基金项目

国家自然科学基金资助项目(41204016,41274017)、江苏省科技支撑计划资助项目(BE2010316). ()

东南大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-0505

访问量0
|
下载量0
段落导航相关论文