| 注册
首页|期刊导航|东南大学学报(自然科学版)|基于交通流参数相关的阻塞流短时预测卡尔曼滤波算法

基于交通流参数相关的阻塞流短时预测卡尔曼滤波算法

董春娇 邵春福 周雪梅 孟梦 诸葛承祥

东南大学学报(自然科学版)Issue(2):413-419,7.
东南大学学报(自然科学版)Issue(2):413-419,7.DOI:10.3969/j.issn.1001-0505.2014.02.033

基于交通流参数相关的阻塞流短时预测卡尔曼滤波算法

Kalman filter algorithm for short-term jam traffic prediction based on traffic parameter correlation

董春娇 1邵春福 2周雪梅 3孟梦 2诸葛承祥2

作者信息

  • 1. 田纳西大学交通研究中心,田纳西37996,美国
  • 2. 北京交通大学城市交通复杂系统理论与技术教育部重点实验室,北京 100044
  • 3. 同济大学教育部道路与交通工程重点实验室,上海210804
  • 折叠

摘要

Abstract

A Kalman filter model considering the correlation property of traffic flow parameters is proposed to realize network short-term traffic flow prediction under jam traffic.The proposed state-space model of short-term traffic flow prediction is presented by solving the conservation equation u-sing Lax-Wendroff scheme.In addition,the spatial-temporal characteristics of the traffic flow on ur-ban expressway networks and the influence factors of on and off ramp are taken into account for flow rate prediction.The estimation algorithm of the proposed state-space model is designed based on the Kalman filter method.A region expressway network in Beijing is taken as an example to evaluate the performance of the proposed method.The results show that the maximum prediction mean absolute percentage error(MAPE)of the proposed Kalman filter model is less than 10%since the input of the Kalman filter model considers the impacts of spatial-temporal characteristics,and the mean of predic-tion MAPE is 7.96%.For the same predicted conditions,the mean prediction MAPEs of ARIMA and Elman model are 19.88% and 10.5 1%,respectively.

关键词

交通流短时预测/阻塞流状态/状态空间模型/卡尔曼滤波

Key words

short-term traffic flow prediction/jam traffic/state-space model/Kalman filter

分类

交通工程

引用本文复制引用

董春娇,邵春福,周雪梅,孟梦,诸葛承祥..基于交通流参数相关的阻塞流短时预测卡尔曼滤波算法[J].东南大学学报(自然科学版),2014,(2):413-419,7.

基金项目

国家自然科学基金资助项目(51178032). ()

东南大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-0505

访问量0
|
下载量0
段落导航相关论文