江汉大学学报(自然科学版)Issue(5):26-30,5.
矩阵方程AXB+CXTD=E自反最佳逼近解的迭代算法
An Iterative Algorithm for Reflexive Optimal Approximation Solutions of Matrix Equations AXB+CX T D=E
摘要
Abstract
Presents an iterative algorithm to compute the optimal approximation solutions of the generalized Sylvester matrix equations AXB+CX T D=E over reflexive (anti-reflexive) matrices with the hybrid steepest descent method. Whether the matrix equations AXB+CX T D=E are consis-tent or not,for arbitrary initial reflexive(anti-reflexive)matrix X0 ,the given algorithm can be used to compute the reflexive(anti-reflexive)optimal approximation solutions X . The effectiveness of the proposed algorithm is verified by two numerical examples.关键词
Sylvester矩阵方程/Kronecker积/复合最速下降法/最佳逼近/自反矩阵Key words
Sylvester matrix equations/Kronecker product/hybrid steepest descent method/optimal approximation/reflexive matrix分类
数理科学引用本文复制引用
杨家稳..矩阵方程AXB+CXTD=E自反最佳逼近解的迭代算法[J].江汉大学学报(自然科学版),2013,(5):26-30,5.基金项目
安徽省高校省级自然科学基金 ()