| 注册
首页|期刊导航|吉林大学学报(理学版)|基于直觉模糊最小二乘支持向量机的变压器故障诊断

基于直觉模糊最小二乘支持向量机的变压器故障诊断

李岩波 张超 郭新辰

吉林大学学报(理学版)Issue(2):313-318,6.
吉林大学学报(理学版)Issue(2):313-318,6.DOI:10.13413/j.cnki.jdxblxb.2014.02.30

基于直觉模糊最小二乘支持向量机的变压器故障诊断

Transformer Fault Diagnosis Based on Intuitionistic Fuzzy Least Squares Support Vector Machine

李岩波 1张超 2郭新辰2

作者信息

  • 1. 吉林大学 数学学院,长春 130012
  • 2. 东北电力大学 理学院,吉林 吉林 132012
  • 折叠

摘要

Abstract

In the light of transformer fault diagnosis based on dissolved gas analysis (DGA)with a small sample size,poor information and the fault diagnosis results is easily affected by the noise in the sample, we proposed an intuitionistic fuzzy least squares support vector machine algorithm (IFLS-SVM).First we derived the related algorithm,and designed the multi-class classifier based on the IFLS-SVM.Then we implemented the power transformers’fault diagnosis using the Matlab software.At last we compared the diagnostic result of the algorithm we proposed with the diagnostic results of the several LS-SVM multi-classification algorithms and BP neural network diagnostic result.Experiments results show that the IFLS-SVM diagnosis is better, with stronger noise immunity.

关键词

电力变压器/故障诊断/直觉模糊/最小二乘支持向量机

Key words

power transformers/fault diagnosis/intuitionistic fuzzy/least squares support vector machine (LS-SVM)

分类

信息技术与安全科学

引用本文复制引用

李岩波,张超,郭新辰..基于直觉模糊最小二乘支持向量机的变压器故障诊断[J].吉林大学学报(理学版),2014,(2):313-318,6.

基金项目

国家自然科学基金(批准号:11226263 ()

11201057 ()

61202261)、吉林省科技发展计划项目(批准号:20130101179JC)、吉林省自然科学基金(批准号:201215165)和符号计算与知识工程教育部重点实验室开放课题项目(批准号:93K172013Z01) (批准号:20130101179JC)

吉林大学学报(理学版)

OA北大核心CSCDCSTPCD

1671-5489

访问量0
|
下载量0
段落导航相关论文