| 注册
首页|期刊导航|计算机工程|一种自适应动态控制参数的粒子群优化算法

一种自适应动态控制参数的粒子群优化算法

徐从东 陈春

计算机工程Issue(10):203-207,5.
计算机工程Issue(10):203-207,5.DOI:10.3969/j.issn.1000-3428.2013.10.043

一种自适应动态控制参数的粒子群优化算法

A Particle Swarm Optimization Algorithm of Adaptive Dynamic Control Parameter

徐从东 1陈春1

作者信息

  • 1. 解放军陆军军官学院炮兵系,合肥 230031
  • 折叠

摘要

Abstract

In the standard Particle Swarm Optimization(PSO), the premature convergence and slow searching of particles decrease the optimization ability of the algorithm. By analyzing global and local search ability, a new adaptive PSO algorithm of dynamic control parameters is proposed. It changes the parameter’s value of learning factor and Inertia weight by particle’s fitness to enhance particle’s search ability. Compared with the standard PSO, experimental result of some typical testing functions proves that the new algorithm has a higher convergence efficiency and faster search speed.

关键词

粒子群优化算法/粒子适用度/学习因子/惯性权重/局部搜索能力/全局搜索能力

Key words

Particle Swarm Optimization(PSO) algorithm/particle fitness/learning factor/inertia weight/local searching ability/global searching ability

分类

信息技术与安全科学

引用本文复制引用

徐从东,陈春..一种自适应动态控制参数的粒子群优化算法[J].计算机工程,2013,(10):203-207,5.

基金项目

安徽省自然科学基金资助项目(11040606M130) (11040606M130)

计算机工程

OACSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文