| 注册
首页|期刊导航|计算机工程|基于矩阵的数据流Top-k频繁项集挖掘算法

基于矩阵的数据流Top-k频繁项集挖掘算法

尹绍宏 范桂丹

计算机工程Issue(3):55-58,75,5.
计算机工程Issue(3):55-58,75,5.DOI:10.3969/j.issn.1000-3428.2014.03.011

基于矩阵的数据流Top-k频繁项集挖掘算法

Top-k Frequent Itemsets Mining Algorithm over Data Streams Based on Matrix

尹绍宏 1范桂丹1

作者信息

  • 1. 天津工业大学计算机科学与软件学院,天津 300387
  • 折叠

摘要

Abstract

The past algorithms produce large amounts of redundant itemsets, and they affect the efficiency of data mining. Therefore, a Top-k frequent itemsets mining algorithm over data streams based on matrix is proposed. Two 0-1 matrices, transaction matrix and 2-itemsets matrix, are introduced into the algorithm. Using transaction matrix to express the transaction list of a sliding window, and 2-itemsets matrix is obtained by calculating the support of each row. Then it can get candidate items by 2-itemsets matrix, and Top-k frequent itemsets are obtained by calculating the support of candidate items through logic and operation of correspond row in transaction matrix. Finally it saves the result of data mining into data dictionary. The algorithm can output the Top-k frequent itemsets by support in descendant order when user queries. Experimental results show that the algorithm avoids redundant itemsets in the process of data mining, and the efficiency of data mining is improved appreciably under the premise of accuracy.

关键词

数据挖掘/数据流/滑动窗口/矩阵/Top-k频繁项集

Key words

data mining/data stream/sliding window/matrix/Top-k frequent itemset

分类

信息技术与安全科学

引用本文复制引用

尹绍宏,范桂丹..基于矩阵的数据流Top-k频繁项集挖掘算法[J].计算机工程,2014,(3):55-58,75,5.

计算机工程

OA北大核心CSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文