| 注册
首页|期刊导航|计算机工程与应用|基于改进模糊聚类与ANFIS的高速公路事件检测

基于改进模糊聚类与ANFIS的高速公路事件检测

姚磊 刘渊

计算机工程与应用Issue(19):242-245,4.
计算机工程与应用Issue(19):242-245,4.DOI:10.3778/j.issn.1002-8331.1112-0613

基于改进模糊聚类与ANFIS的高速公路事件检测

Freeway incident detection based on improved fuzzy clustering arithmetic and ANFIS

姚磊 1刘渊2

作者信息

  • 1. 江南大学 物联网工程学院,江苏 无锡 214122
  • 2. 江南大学 数字媒体学院,江苏 无锡 214122
  • 折叠

摘要

Abstract

In order to accurately and timely detect highway traffic accident, reduce traffic delay and improve highway safety, this paper combines subtractive clustering and Fuzzy C-Means(FCM) clustering method to cluster the input sample data to build the initial fuzzy inference system, then the hybrid algorithm is used to train the parameters of the fuzzy system, determine the fuzzy reasoning rules, and establish a final training fuzzy model. Compared with the simulation experimental results, the method obtains excellent performance on ROC(Receiver Operation Characteristic)curve, shows the validity of the modeling method based on the improved fuzzy clustering and Adaptive Neural Fuzzy Inference System(ANFIS).

关键词

交通事件检测/模糊C均值聚类/减法聚类/自适应神经模糊推理/ROC曲线

Key words

freeway incident detection/Fuzzy C-Means(FCM)clustering/subtractive clustering/Adaptive Neural Fuzzy Infer-ence/ROC curve

分类

信息技术与安全科学

引用本文复制引用

姚磊,刘渊..基于改进模糊聚类与ANFIS的高速公路事件检测[J].计算机工程与应用,2013,(19):242-245,4.

基金项目

国家自然科学基金(No.61103223);江苏省自然科学基金重点研究专项(No.BK2011003)。 ()

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文