| 注册
首页|期刊导航|计算机工程与应用|改进的粒子群模糊聚类算法

改进的粒子群模糊聚类算法

钱雪忠 李静 宋威

计算机工程与应用Issue(22):115-118,122,5.
计算机工程与应用Issue(22):115-118,122,5.DOI:10.3778/j.issn.1002-8331.1304-0211

改进的粒子群模糊聚类算法

Improved fuzzy clustering algorithm based on particle swarm optimization

钱雪忠 1李静 1宋威1

作者信息

  • 1. 江南大学 物联网工程学院,江苏 无锡 214122
  • 折叠

摘要

Abstract

Aiming at the problem of traditional fuzzy C-means clustering algorithm that it is sensitive to the initial clustering centers and easy to fall into the local optimization, an improved algorithm that combines Particle Swarm Optimization algorithm with FCM algorithm is proposed. Depending on utilizing the global searching ability of Particle Swarm Optimization algorithm instead of the FCM algorithm, the new algorithm searches the initial cluster centers and escapes from the local optimization so as to achieve fuzzy clustering at last. Meanwhile, it mainly redesigns the fitness function from the perspective of compactness in intra-class and separation in inter-class. The experimental results show that the proposed algorithm has a better effect on both the cluster validity indexes and clustering accuracy.

关键词

模糊聚类/模糊C-均值聚类算法/粒子群优化算法/紧凑性/分离性

Key words

fuzzy clustering/Fuzzy C-means(FCM)/Particle Swarm Optimization(PSO)/compactness/separation

分类

信息技术与安全科学

引用本文复制引用

钱雪忠,李静,宋威..改进的粒子群模糊聚类算法[J].计算机工程与应用,2013,(22):115-118,122,5.

基金项目

国家自然科学基金(No.61103129,No.61202312);江苏省科技支撑计划资助项目(No.BE2009009)。 ()

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文