| 注册
首页|期刊导航|计算机工程与应用|改进蚁群算法和支持向量机的网络入侵检测

改进蚁群算法和支持向量机的网络入侵检测

肖国荣

计算机工程与应用Issue(3):75-78,107,5.
计算机工程与应用Issue(3):75-78,107,5.DOI:10.3778/j.issn.1002-8331.1203-0713

改进蚁群算法和支持向量机的网络入侵检测

Network intrusion detection by combination of improved ACO and SVM

肖国荣1

作者信息

  • 1. 广东金融学院 计算机科学与技术系,广州 510521
  • 折叠

摘要

Abstract

In order to improve network intrusion detection accuracy, this paper proposes a network detection method based on improved Ant Colony Optimization algorithm(ACO)and Support Vector Machine(ACO-SVM). The parameters of SVM model are considered as the position vector of ants. Target individuals which lead the ant colony to do global rapid search are determined by dynamic and stochastic extraction, and the optimal ant of this generation searches in small step nearly. The optimal parameter value is obtained by ACO. The network intrusion detection model is obtained. The ACO-SVM performance is tested by KDD CUP99 data. The results show that the proposed method has improved the network anomaly detection accuracy, and reduced the false alarm rate.

关键词

网络入侵/支持向量机/蚁群算法/检测

Key words

network intrusion/Support Vector Machine(SVM)/Ant Colony Optimization(ACO)algorithm/detection

分类

信息技术与安全科学

引用本文复制引用

肖国荣..改进蚁群算法和支持向量机的网络入侵检测[J].计算机工程与应用,2014,(3):75-78,107,5.

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文