| 注册
首页|期刊导航|计算机工程与应用|小麦叶部常见病害特征提取及识别技术研究

小麦叶部常见病害特征提取及识别技术研究

王美丽 牛晓静 张宏鸣 赵建邦 何东健

计算机工程与应用Issue(7):154-157,4.
计算机工程与应用Issue(7):154-157,4.DOI:10.3778/j.issn.1002-8331.1308-0316

小麦叶部常见病害特征提取及识别技术研究

Research on feature extraction and recognition of common diseases of wheat leaf

王美丽 1牛晓静 1张宏鸣 1赵建邦 1何东健2

作者信息

  • 1. 西北农林科技大学 信息工程学院,陕西 杨凌 712100
  • 2. 西北农林科技大学 机械电子与工程学院,陕西 杨凌 712100
  • 折叠

摘要

Abstract

This paper selects four common diseases of wheat leaf images, using image processing techniques to identify different types of disease. Firstly, the RGB color space is converted to HSV color space, the relevant color characteristics (hue and saturation)are extracted, and then geometry features(perimeter area, squareness, roundness, eccentricity, etc.) are extracted. To obtain the eigenvalues of each disease range, the sample images are analyzed, and then the eigenvalues of the unknown samples are used to identify different kinds of wheat diseases. This research takes powdery mildew and rust (leaf rust, stripe rust and stem rust)as research objects. Based on color characteristics, the powdery mildew and rust are identified, according to the shape characteristics, leaf rust, stripe rust and stem rust are identified. The proposed method is simple and convenient with an identification rate of more than 96%. The experimental results show that the chosen color and shape features of these four common diseases are valid and feasible for wheat diseases identification.

关键词

小麦病害/特征提取/图像识别

Key words

wheat disease/feature extraction/image recognition

分类

信息技术与安全科学

引用本文复制引用

王美丽,牛晓静,张宏鸣,赵建邦,何东健..小麦叶部常见病害特征提取及识别技术研究[J].计算机工程与应用,2014,(7):154-157,4.

基金项目

国家高技术研究发展计划(863)(No.2013AA10230402);中央高校基本科研业务费(No.ZD2012018,No.QN2013051);西北农林科技大学博士启动基金(No.Z111021301)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量4
|
下载量0
段落导航相关论文