| 注册
首页|期刊导航|计算机工程与应用|双正则化参数的L2-SVM参数选择

双正则化参数的L2-SVM参数选择

姚程宽 许建华

计算机工程与应用Issue(8):99-102,246,5.
计算机工程与应用Issue(8):99-102,246,5.DOI:10.3778/j.issn.1002-8331.1307-0326

双正则化参数的L2-SVM参数选择

Parameter optimization of L2-SVM with two regularization parameters

姚程宽 1许建华2

作者信息

  • 1. 安庆医药高等专科学校 公共基础部,安徽 安庆 246003
  • 2. 南京师范大学 计算机学院,南京 210024
  • 折叠

摘要

Abstract

Searching the optimal parameters is one of the most important area of SVM and often named as parameter opti-mization or parameter selection. The L2-SVM can convert the samples into linearly separable problem. Based on the per-formance, this paper proposes the L2-SVM with two regularization parameters, and the dual formulation of L2-SVM with two regularization parameters is deduced. Combining the objective function established on minimizing the VC dimension and the gradient method, a new algorithm called Doupenalty-Gradient is present. Ten benchmark datasets are used in the experiments, and the classifying accuracy is improved obviously. The experimental results show the wonderful property and the feasibility of Doupenalty-Gradient.

关键词

统计学习理论/支持向量机/VC维/参数选择

Key words

statistical learning theory/support vector machines/VC dimension/parameter selection

分类

信息技术与安全科学

引用本文复制引用

姚程宽,许建华..双正则化参数的L2-SVM参数选择[J].计算机工程与应用,2014,(8):99-102,246,5.

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文