| 注册
首页|期刊导航|计算机科学与探索|基于改进T-S模糊神经网络的交通流量预测

基于改进T-S模糊神经网络的交通流量预测

侯越

计算机科学与探索Issue(1):121-126,6.
计算机科学与探索Issue(1):121-126,6.DOI:10.3778/j.issn.1673-9418.1309008

基于改进T-S模糊神经网络的交通流量预测

Traffic Flow Prediction Based on Improved T-S Fuzzy Neural Network

侯越1

作者信息

  • 1. 兰州交通大学 电子与信息工程学院,兰州 730070
  • 折叠

摘要

Abstract

Based on the glowworm swarm optimization (GSO) and T-S fuzzy neural network (TSFNN), this paper proposes a prediction algorithm for traffic flow of T-S fuzzy neural network optimized glowworm swarm optimiza-tion (GSOTSFNN). The proposed algorithm uses GSO to get the optimal parameter configuration, thus can perform mapping ability of T-S fuzzy neural network for generalization. The efficiency of the proposed prediction algorithm is tested by the simulation of real traffic flow. The simulation results show that the proposed algorithm has higher forecasting accuracy compared with the traditional T-S fuzzy neural network and T-S fuzzy neural network opti-mized genetic algorithm, so it is feasible and effective in the practical prediction of traffic flow.

关键词

智能交通系统(ITS)/萤火虫优化算法(GSO)/T-S模型/模糊神经网络/交通流量/预测

Key words

intelligent transportation system (ITS)/glowworm swarm optimization (GSO)/T-S model/fuzzy neural network/traffic flow/prediction

分类

信息技术与安全科学

引用本文复制引用

侯越..基于改进T-S模糊神经网络的交通流量预测[J].计算机科学与探索,2014,(1):121-126,6.

基金项目

The Young Scientific Research Fund Project of Lanzhou Jiaotong University under Grant No.2013006(兰州交通大学青年科学基金项目) (兰州交通大学青年科学基金项目)

计算机科学与探索

OA北大核心CSCDCSTPCD

1673-9418

访问量0
|
下载量0
段落导航相关论文