| 注册
首页|期刊导航|计算机科学与探索|非齐次隐马尔可夫因子模型期望最大化算法

非齐次隐马尔可夫因子模型期望最大化算法

程玉胜 丁美文 夏叶茂

计算机科学与探索Issue(3):359-367,9.
计算机科学与探索Issue(3):359-367,9.DOI:10.3778/j.issn.1673-9418.1309004

非齐次隐马尔可夫因子模型期望最大化算法

Expectation-Maximization Algorithm about Non-Homogenous Hidden Markov Factor Model

程玉胜 1丁美文 1夏叶茂2

作者信息

  • 1. 安庆师范学院 数学与计算科学学院,安徽 安庆 246011
  • 2. 南京林业大学 应用数学系,南京 210037
  • 折叠

摘要

Abstract

Latent variable model plays an important role in characterizing interrelationship among factor variables and constructing relationships between factor and observed variable. However, in real applications, data set often takes on the temporal variability, multimode, skewness, and so on. This paper extends the classic latent variable model to the latent variable model mixed with non-homogenous hidden Markov model. In order to avoid integral about complete data, this paper introduces the expectation-maximization (EM) algorithm to calculate the likelihood function. At the same time, this paper presents the corresponding statistics using the Akaike information criterion and the Bayes information criterion to select appropriate model, which effectively solves the estimation problem in the hidden Markov model. Finally, the experiments are carried out in the mental-health data and the results show that the method is effective.

关键词

隐马尔可夫模型/潜变量模型/期望最大化(EM)/向前向后递推

Key words

hidden Markov model/latent variable model/expectation-maximization (EM)/forward-backward recursion

分类

信息技术与安全科学

引用本文复制引用

程玉胜,丁美文,夏叶茂..非齐次隐马尔可夫因子模型期望最大化算法[J].计算机科学与探索,2014,(3):359-367,9.

基金项目

The National Natural Science Foundation of China under Grant No.61306046(国家自然科学基金) (国家自然科学基金)

the Natural Science Foundation of Anhui Province of China under Grant Nos.070412061,10040606Q42(安徽省自然科学基金) (安徽省自然科学基金)

计算机科学与探索

OA北大核心CSCDCSTPCD

1673-9418

访问量4
|
下载量0
段落导航相关论文