| 注册
首页|期刊导航|计算机应用与软件|区域分解型并行预条件的一种粗网格校正算法

区域分解型并行预条件的一种粗网格校正算法

吴建平 马怀发 赵军 宋君强 张卫民

计算机应用与软件Issue(9):10-11,118,3.
计算机应用与软件Issue(9):10-11,118,3.DOI:10.3969/j.issn.1000-386x.2013.09.003

区域分解型并行预条件的一种粗网格校正算法

A COARSE GRID CORRECTION ALGORITHM FOR DOMAIN DECOMPOSITION BASED PARALLEL PRECONDITIONERS

吴建平 1马怀发 2赵军 1宋君强 1张卫民1

作者信息

  • 1. 国防科技大学计算机学院 湖南 长沙410073
  • 2. 中国水利水电科学研究院流域水循环模拟与调控国家重点实验室 北京100038
  • 折叠

摘要

Abstract

Domain decomposition is one of the fundamental methods for parallel computing .During the solution of sparse linear systems with iterations , for the effective preconditioners in serial computation such as incomplete factorisation , it is usual to adopt the domain decomposition ideas to parallelise .But the essence of the domain decomposition is to approximate the global solution with local solutions , which must lead to significant errors .To reduce this error , a coarse grid correction algorithm is presented through the contraction of the non-overlapped sub-domains in this paper , with each sub-domain concentrating to a super node .A small linear system with small order is formed in this way, which contains the global information , and the order is equal to the number of domains .Then, the coarse grid operator is used to correct the original parallel preconditioners .Numerical experiments with block Jacobi-type, classical additive Schwarz , and factors combination-based parallel incomplete factorisation show that the provided coarse grid correction can improve the convergence effectively , thus improves the efficiency of the solution process .

关键词

区域分解/并行计算/稀疏线性方程组/预条件/粗网格校正

Key words

Domain decomposition/Parallel computing/Sparse linear system/Preconditioner/Coarse grid correction

分类

信息技术与安全科学

引用本文复制引用

吴建平,马怀发,赵军,宋君强,张卫民..区域分解型并行预条件的一种粗网格校正算法[J].计算机应用与软件,2013,(9):10-11,118,3.

基金项目

国家自然科学基金项目(60803039,51079164);水利部公益性行业科研专项(201201053);国家重点基础研究发展计划项目(2009 CB733803)。 ()

计算机应用与软件

OA北大核心CSCDCSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文