| 注册
首页|期刊导航|计算机应用与软件|基于粒子群优化与 BP算法的协同神经网络学习方法

基于粒子群优化与 BP算法的协同神经网络学习方法

江丽 王爱平

计算机应用与软件Issue(9):19-20,99,3.
计算机应用与软件Issue(9):19-20,99,3.DOI:10.3969/j.issn.1000-386x.2013.09.006

基于粒子群优化与 BP算法的协同神经网络学习方法

COOPERATIVE NEURAL NETWORK LEARNING ALGORITHM BASED ON PARTICLE SWARM OPTIMISATION AND BP NEURAL NETWORK

江丽 1王爱平1

作者信息

  • 1. 安徽大学计算机科学与技术学院 安徽 合肥230601
  • 折叠

摘要

Abstract

For the standard BP algorithm usually has the limitations of local extreme values and slow convergence , a cooperative neural network learning method based on particle swarm optimisation ( PSO ) and BP algorithm is proposed in this paper .During the process of network learning, this method makes use of both PSO and BP algorithms simultaneously to carry out the cooperative search of optimal network weight, so that it takes the full advantages of global search property of PSO and back propagation feature of BP algorithm .We apply this algorithm in fitting simulation with four complex functions and compare it with the BP neural network algorithms based on either standard BP network or traditional PSO .Experimental results show that the cooperative algorithm proposed performs better than the traditional BP network optimisation algorithms .

关键词

BP算法/粒子群算法/优化/函数拟合/协同算法

Key words

BP algorithm/Particle swarm optimisation algorithm/Optimising/Function fitting/Cooperative algorithm

分类

信息技术与安全科学

引用本文复制引用

江丽,王爱平..基于粒子群优化与 BP算法的协同神经网络学习方法[J].计算机应用与软件,2013,(9):19-20,99,3.

基金项目

国家自然科学基金项目(61074071,61104022)。 ()

计算机应用与软件

OA北大核心CSCDCSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文