| 注册
首页|期刊导航|计算机应用与软件|基于惩罚的S VM和集成学习的非平衡数据分类算法研究

基于惩罚的S VM和集成学习的非平衡数据分类算法研究

刘进军

计算机应用与软件Issue(1):186-190,5.
计算机应用与软件Issue(1):186-190,5.DOI:10.3969/j.issn.1000-386x.2014.01.049

基于惩罚的S VM和集成学习的非平衡数据分类算法研究

RESEARCH ON CLASSIFYING UNBALANCED DATA BASED ON PENALTY-BASED SVM AND ENSEMBLE LEARNING

刘进军1

作者信息

  • 1. 阳江职业技术学院计算机科学系 广东 阳江529500
  • 折叠

摘要

Abstract

To process the unbalanced data with various algorithms has become a focus in data mining research.Aiming at the characteristic of the unbalanced data,on the basis of studying the related theory of support vector machines and the K-SVM algorithm,we present the penalty mechanism-based PFKSVM (SVM based on penalty factor ) method to overcome the problem of K-SVM that it is prone to misclassification when nearby the optimal classification surface.Then,we propose an ensemble learning model composing of the reconstructed sampling layer,basic training layer and decision layer.The experiment using UCI public data sets verifies the predominance of PFKSVM algorithm and the ensemble model in processing the unbalanced data classification.

关键词

数据挖掘/支持向量机(SVM)/非平衡数据分类/集成学习

Key words

Data mining/Support vector machine(SVM)/Unbalanced data classification/Ensemble learning

分类

信息技术与安全科学

引用本文复制引用

刘进军..基于惩罚的S VM和集成学习的非平衡数据分类算法研究[J].计算机应用与软件,2014,(1):186-190,5.

计算机应用与软件

OACSCDCSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文