| 注册
首页|期刊导航|计算机应用与软件|基于改进萤火虫算法的多模函数优化

基于改进萤火虫算法的多模函数优化

吴伟民 亢少将 林志毅 郭涛

计算机应用与软件Issue(1):283-285,302,4.
计算机应用与软件Issue(1):283-285,302,4.DOI:10.3969/j.issn.1000-386x.2014.01.076

基于改进萤火虫算法的多模函数优化

MULTIMODAL FUNCTION OPTIMISATION BASED ON IMPROVED GLOWWORM SWARM OPTIMISATION

吴伟民 1亢少将 1林志毅 1郭涛1

作者信息

  • 1. 广东工业大学计算机学院 广东 广州510006
  • 折叠

摘要

Abstract

In order to improve the performance of multimodal function optimisation with glowworm swarm optimisation (GSO),and to solve the problems of GSO in low peaks discovery rate,slow convergence speed and low computational accuracy,we propose an improved glowworm swarm optimisation (IGSO),in which the individual glowworm (agent)can adaptively search the peaks,and its moving step is variable.The IGSO introduces the tentative moving strategy to enhance the searching ability of the algorithm,and meantime it uses average neighbourhood distance as the reference to adjust agent’s moving step.The results of experiment on typical multimodal functions indicate that the IGSO is superior to GSO in multimodal function optimisation with high peaks discovery rate,fast convergence speed and high computational accuracy.

关键词

GSO/IGSO/多模函数/移动步长

Key words

GSO/IGSO/Multimodal function/Moving step

分类

信息技术与安全科学

引用本文复制引用

吴伟民,亢少将,林志毅,郭涛..基于改进萤火虫算法的多模函数优化[J].计算机应用与软件,2014,(1):283-285,302,4.

计算机应用与软件

OACSCDCSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文