| 注册
首页|期刊导航|计算机应用与软件|基于改进混合高斯模型的自适应运动车辆检测算法

基于改进混合高斯模型的自适应运动车辆检测算法

张虎 方华 李春贵

计算机应用与软件Issue(1):286-289,4.
计算机应用与软件Issue(1):286-289,4.DOI:10.3969/j.issn.1000-386x.2014.01.077

基于改进混合高斯模型的自适应运动车辆检测算法

ADAPTIVE MOVING VEHICLE DETECTION ALGORITHM BASED ON IMPROVED GAUSSIAN MIXTURE MODEL

张虎 1方华 2李春贵1

作者信息

  • 1. 广西工学院电子信息与控制工程系 广西 柳州545006
  • 2. 广西工学院工程训练中心 广西 柳州545006
  • 折叠

摘要

Abstract

There are often the cases in road video surveillance systems that the vehicles are slowly moving or in short stay.In view of the problems that the background subtraction method of traditional Gaussian mixture model is sensitive to abrupt changes in environment and has information loss on slow moving target,we propose an improved adaptive vehicle detection algorithm.First,in order to restrain the foreground of slow movement to be trained to the background,the present pixel-values are classified before updating the parameters,and the models are set different replacement rates according to classification results.Secondly,for removing the interference of environmental changes,a metric factor that tracks environmental changes is introduced to realise the adaptive switch between the background subtraction and the inter-frame difference algorithm when abrupt environmental change occurs.Finally the more accurate object is gotten by ecological filtering.Experiments show that this algorithm can get better detection effect for moving vehicles in daytime real-time traffic video.

关键词

自适应/混合高斯模型/背景减除/目标检测

Key words

Adaptive/Mixture/Gaussian model/Background subtraction/Target detection

分类

信息技术与安全科学

引用本文复制引用

张虎,方华,李春贵..基于改进混合高斯模型的自适应运动车辆检测算法[J].计算机应用与软件,2014,(1):286-289,4.

基金项目

广西自然科学基金项目(2011GXN SFA018162)。 ()

计算机应用与软件

OACSCDCSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文