| 注册
首页|期刊导航|计算力学学报|细长结构几何非线性分析的子结构方法

细长结构几何非线性分析的子结构方法

齐朝晖 孔宪超 方慧青

计算力学学报Issue(6):757-762,6.
计算力学学报Issue(6):757-762,6.DOI:10.7511/jslx201306002

细长结构几何非线性分析的子结构方法

Substructure methods in geometric nonlinear analysis of slender structures

齐朝晖 1孔宪超 1方慧青1

作者信息

  • 1. 大连理工大学工程力学系工业装备结构分析国家重点实验室,大连 116023
  • 折叠

摘要

Abstract

Along the longitudinal direction ,a slender structure can be divided into several substructures on w hich an embedded coordinate frame is defined ,there by total nodal displacements can be decomposed into the rotation of the frame and the small relative displacements with respect to the frame .Taking advantage of such deformation characteristics ,we give the expressions of frame rotations and nodal dis-placements as well as their virtual variations ,which are compatible with the definition of the embedded coordinate frames .Consequently ,we presented a new substructure method for geometrically nonlinear analysis of slender structures ,in w hich displacements of each substructure are reduced to the displace-ments of its boundary nodes .Compared to traditional methods of geometrically nonlinear analysis ,the present method can greatly reduce the solution scale in case of not losing precision .Finally ,an example show s the effectiveness of the method .

关键词

结构力学/几何非线性/子结构/大转动

Key words

structural mechanics/geometric nonlinearity/substructures/large rotation

分类

数理科学

引用本文复制引用

齐朝晖,孔宪超,方慧青..细长结构几何非线性分析的子结构方法[J].计算力学学报,2013,(6):757-762,6.

基金项目

国家自然科学基金(10972044)资助项目. ()

计算力学学报

OA北大核心CSCDCSTPCD

1007-4708

访问量0
|
下载量0
段落导航相关论文