| 注册
首页|期刊导航|计算机技术与发展|基于自调节粒子群算法的盲检测

基于自调节粒子群算法的盲检测

张昀 于舒娟 王京

计算机技术与发展Issue(11):59-61,65,4.
计算机技术与发展Issue(11):59-61,65,4.DOI:10.3969/j.issn.1673-629X.2013.11.015

基于自调节粒子群算法的盲检测

Blind Detection Based on Self-adaptive Particle Swarm Optimization

张昀 1于舒娟 1王京1

作者信息

  • 1. 南京邮电大学 电子科学与工程学院,江苏 南京 210003
  • 折叠

摘要

Abstract

The blind algorithm based on Particle Swarm Optimization ( PSO) can achieve signal blind detection successfully,but has some defects such as converging to local optimum or slow convergence. By analyzing the performance of the PSO algorithm and the parameter setting,an improved blind algorithm based on self-adjustment PSO algorithm is presented. The thoughts are through blind detection sys-tem model based on MIMO system,translated the blind detection problem into quadratic optimization problem,and the new PSO algo-rithm was used to solve the problem. The experiment results show that the new PSO has good features such as strong global search capa-bility,rapid convergence and short computation time,which confirms the validity and feasibility of this approach.

关键词

盲检测/自调节因子/粒子群算法

Key words

blind detection/self-adjustment factor/PSO

分类

信息技术与安全科学

引用本文复制引用

张昀,于舒娟,王京..基于自调节粒子群算法的盲检测[J].计算机技术与发展,2013,(11):59-61,65,4.

基金项目

国家自然科学基金资助项目(60772060) (60772060)

南京邮电大学引进人才项目(NY212022) (NY212022)

南京邮电大学青蓝工程项目(NY210037) (NY210037)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文