| 注册
首页|期刊导航|计算机技术与发展|基于队列长度和速率的拥塞控制神经网络方法

基于队列长度和速率的拥塞控制神经网络方法

李琴 周井泉 黄亮亮

计算机技术与发展Issue(2):107-110,4.
计算机技术与发展Issue(2):107-110,4.DOI:10.3969/j.issn.1673-629X.2014.02.026

基于队列长度和速率的拥塞控制神经网络方法

Method of Congestion Control Neural Network Based on Queue Length and Rate

李琴 1周井泉 1黄亮亮1

作者信息

  • 1. 南京邮电大学 电子科学与工程学院,江苏 南京 210003
  • 折叠

摘要

Abstract

Study the problems of network congestion control. PID controller is an effective method of realizing the network congestion control,which completes the active queue management for network. According to the queue length and rate,using the traditional PID function implemented by neural network,a new network congestion control algorithm (RSPID) based on the queue length and the rate is proposed. The new algorithm adjusts the control parameters by using weighted momentum gradient learning algorithm in neural network, to overcome the adaptability and stability problems in traditional PID control caused by constant controller parameters. The simulation re-sults show that performance of the RSPID algorithm is superior to PID algorithm.

关键词

拥塞控制/动量梯度学习/神经网络/比例微分积分器

Key words

congestion control/momentum gradient learning/neuron network/PID

分类

信息技术与安全科学

引用本文复制引用

李琴,周井泉,黄亮亮..基于队列长度和速率的拥塞控制神经网络方法[J].计算机技术与发展,2014,(2):107-110,4.

基金项目

江苏省自然科学基金项目(CXLX12_0471) (CXLX12_0471)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文