非均匀电磁介质中的等效源重构
Equivalent source reconstruction in inhomogeneous electromagnetic media
摘要
Abstract
In this paper, a method that uses magnetic extreme signals for equivalent source reconstruction is presented. Through simulation of specific current dipoles given as the sources of magnetic field signals, the feasibility of a multi-chamber heart model is investigated and the accuracy analysis of equivalent source reconstruction in inhomogeneous media is conducted. The magnitude of the magnetic extreme signals is indicative of the influence of volume conductor on the cardiac magnetic field is analyzed. The method is compared with other four methods which are the method of magnetic gradient extreme signals, the Nelder-Mead algorithm, the trust region reflective algorithm, and the particle swarm optimization algorithm against the criteria in terms of accuracy of source reconstruction and computation time of the algorithm. Results show that the method is practically useful for solving inverse cardiac magnetic field problems.关键词
心磁图/逆问题/心脏模型/体电导Key words
magnetocardiography/inverse problem/heart model/volume conductor引用本文复制引用
赵晨,蒋式勤,石明伟,朱俊杰..非均匀电磁介质中的等效源重构[J].物理学报,2014,(7):078702-1-078702-6,6.基金项目
国家自然科学基金(批准号:60771030)、国家高技术研究发展计划(批准号:2008AA02Z308)、上海市重点基础研究发展计划(批准号:08JC1421800)、上海市重点学科建设项目(批准号:B004)、和信息功能材料国家重点实验室(中国科学院上海微系统与信息技术研究所)开放课题和上海市医学图像处理与计算机辅助手术重点实验室开放课题(批准号:13DZ2272200-2)资助的课题.* Project supported in part by the National Natural Science Foundation of China (Grant No 60771030), the National High Technology Research and Development Program of China (Grant No 2008AA02Z308), the Shanghai Science and Technology Development Foundation, China (Grant No 08JC1421800), the Shanghai Leading Academic Discipline Project (Grant No B004), the Open Project of State Key Laboratory of Function Materials for Information (Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences), and the Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai (Grant No.13DZ2272200-2) (批准号:60771030)