| 注册
首页|期刊导航|智能系统学报|变异粒子群优化的 BP 神经网络在入侵检测中的应用

变异粒子群优化的 BP 神经网络在入侵检测中的应用

宋玲 常磊

智能系统学报Issue(6):558-563,6.
智能系统学报Issue(6):558-563,6.DOI:10.3969/j.issn.1673-4785.201304040

变异粒子群优化的 BP 神经网络在入侵检测中的应用

Application of mutation particle swarm optimization based BP neural network in the intrusion detection system

宋玲 1常磊2

作者信息

  • 1. 广西大学计算机与电子信息学院,广西南宁530004
  • 2. 河北化工医药职业技术学院信息工程系,河北石家庄050026
  • 折叠

摘要

Abstract

A aiming at the properties of real-time performance and self-learning of the intrusion detection system (IDS), an improved particle swarm optimization (PSO) based on the mutation operator was proposed , which was used to optimize BP neural network , so as to accelerate convergence speed of BP neural network , thus, the MPSO_BP hybrid optimization algorithm is presented .In order to increase detection rate and lower false alarm rate of the intrusion detection system , a new intrusion detection model ( MPBIDS) was put forward .Iris data set was applied to the three BP neural networks for simulation .Experiment results show that the optimized BP neural network had bet-ter convergence speed and accuracy .Based on this finding , the improved BP network was applied to intrusion de-tection , taking KDDCUP 99 as the test data set .The simulation result proves that the IDS with improved BP network can improve the detection rate and reduce the false alarm rate .

关键词

变异算子/入侵检测系统/粒子群优化算法/BP神经网络

Key words

mutation operator/intrusion detection system/particle swarm optimization/BP neural network

分类

信息技术与安全科学

引用本文复制引用

宋玲,常磊..变异粒子群优化的 BP 神经网络在入侵检测中的应用[J].智能系统学报,2013,(6):558-563,6.

基金项目

国家自然科学基金资助项目(60963022). ()

智能系统学报

OA北大核心CSCDCSTPCD

1673-4785

访问量0
|
下载量0
段落导航相关论文