| 注册
首页|期刊导航|太赫兹科学与电子信息学报|基于点过程模型连续语音关键词检测

基于点过程模型连续语音关键词检测

王勇 张连海

太赫兹科学与电子信息学报Issue(6):958-963,6.
太赫兹科学与电子信息学报Issue(6):958-963,6.DOI:10.11805/TKYDA201306.0958

基于点过程模型连续语音关键词检测

Spotting keywords in continuous speech based on Point Process Models

王勇 1张连海1

作者信息

  • 1. 信息工程大学信息 信息系统工程学院,河南 郑州 450002
  • 折叠

摘要

Abstract

A keyword spotting method is proposed based on Point Process Model(PPM) in continuous speech. Frame-level phone posterior probability is computed by using TempoRAl Patterns(TRAP) and Multiple Layer Perception(MLP). The speech can be considered as independent events(phones), and PPM can be set up by using Poisson process. The likelihood ratio is calculated to estimate whether the keyword is uttered. The experimental results show that the average recall and precision rate of keywords are above 69.5%and 82.0%with 8 kHz sampling frequency for speech, respectively.

关键词

检测/音素后验概率/泊松过程/点过程

Key words

spotting/phone posterior probability/Poisson process/Point Process

分类

信息技术与安全科学

引用本文复制引用

王勇,张连海..基于点过程模型连续语音关键词检测[J].太赫兹科学与电子信息学报,2013,(6):958-963,6.

太赫兹科学与电子信息学报

OACSTPCD

2095-4980

访问量0
|
下载量0
段落导航相关论文